If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12=216
We move all terms to the left:
x^2+12-(216)=0
We add all the numbers together, and all the variables
x^2-204=0
a = 1; b = 0; c = -204;
Δ = b2-4ac
Δ = 02-4·1·(-204)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{51}}{2*1}=\frac{0-4\sqrt{51}}{2} =-\frac{4\sqrt{51}}{2} =-2\sqrt{51} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{51}}{2*1}=\frac{0+4\sqrt{51}}{2} =\frac{4\sqrt{51}}{2} =2\sqrt{51} $
| 75+2x=5.75x | | 50+2x=4.00 | | 10=((t*t)-t)/2 | | 3x^2+6x=1/3 | | 10=t^2-t/2 | | -3(4x-2)=-6(2x-4) | | (17x+4)+(19x-2)=180 | | 10-t^2+t*2=0 | | 0=32t^2+40t-48 | | 32t^2+40t-48=0 | | R(n)=0.25n0.75+0.25n. | | 20.7+n=9 | | X+30=x-10=x+10=2x | | -4x+2=-3x-4 | | 2a+9=9+5 | | u^2+6u+3=0 | | 3*4^(3x-6)+2=35 | | 3(4)^(3x-6)+2=35 | | 2x-2+2x+8=90 | | 7/3+x=3 | | Y-20=180°-y | | 39x-3=15 | | -2x-x=-7-2 | | 6(9-x)-3(8x-3=6x-9 | | 2^x=4+2x | | 2^x=+2x | | v+6/v+3=(v-5/v-3)+1 | | 6x-14=4x+1 | | -3(4x-2)=-6(2x- | | v+6/v+3=v-5/v-3+1 | | -(3x-7)=3(7-2x)-13 | | 9x^2=30x-25= |